Engineering Program | Specialization | Automatic control technology | | |------------------------|--------------------------------|--| | Course Number | 20310241 | | | Course Title | Process Control Systems | | | Credit Hours | 2 | | | Theoretical Hours | 2 | | | Practical Hours | 0 | | #### **Brief Course Description:** This subject covers the application of instrumentation in process industry introduced different quantities to be controlled like (pressure, temperature, level, flow), analog(electronics and pneumatics) and digital control device #### **Course Objectives:** Upon the completion of the course, the student will be able to: - 1. Identify the functions of the various components of the automatic process control system. - 2. Recognize the open and closed Loop systems and their application in process control. - 3. Carry out the necessary calculations to guarantee system stability and accepted system performance. - 4. Realize PID modes of control using the necessary analogue electronic equipment. - 5. Carry out controller tuning using the recommended methods. Assemble and test simple automatic process control system. ## جامعة البلغاء التطبيةية **Detailed Course Description:** | | Detailed Course Description: | | | | |----------------|--|---|----------------|--| | Unit
Number | Unit Name | Unit Content | Time
Needed | | | 1. | Introduction to process control | Historical background.
Application of process control
in industry. Advantages of
automatic process control. Main
components of process control
system. Block diagrams. Open-
Loop and closed-Loop system.
Classification of process control
systems in accordance with the
nature of power or the nature of
control signals | | | | 2. | Transfer function | Transfer functions of the
proportional element, integral
element differential element,
first order element, and second
order element | | | | 3. | Block Diagrams | ■ Transfer function of series dynamic elements, loops with negative and loops with positive feed backs. Simplification of block diagrams. Transfer function of open-loop and closed-loop systems | | | | 4. | Stability of automatic
Process Control
Systems | The characteristic equation of the closed-loop system. Introduction to systems stability. Algebraic criteria of stability. The frequency response and bode diagrams | | | | 5. | Automatic control modes and there characteristics | Two –position control, proportional control, proportional-plus-reset control, proportional-plus-Rate | | | ## Al-Balqa' Applied University ## جامعة البلقاء التطبيقية | | | control, process reaction curves of P/PI/PID controllers | |-----|---|--| | 6. | Multiply variable control | Cascade Control, Ratio Control,
Feed ward control | | 7. | Pneumatic control mechanisms | Contents, function, signals, actions, | | 8. | Electronics control system | Transmitters, the principle of operation, signals, action, | | 9. | Final control elements | Types of control valve, choice
of control valves, control valve
bodies, control valve actuators,
positioners and accessories,
self-powered valve | | 10. | Controller Tuning | Open-loop transient response
method. Ziegler-Nichols
method. Frequency response
method | | 11. | Schematic reading of processes by using ISA | | | 12. | Digital control system | A/D converter, D/A converter sampler data control system, | **Evaluation Strategies:** | L'aidation Strategies. | | | | |------------------------|-------------|------------|------| | Exams | | Percentage | Date | | Exams | First Exam | 20% | | | | Second Exam | 20% | | | | Final Exam | 50% | | | Homework and Projects | | 10% | | #### **Teaching Methodology:** Lectures #### **Text Books & References:** - 1. Process control instrumentation technology, Curtis D. Johnson, Fifth edition Printice-Hall international, Inc.1997, USA. - 2. Introduction to control system technology, Fourth edition. Robert N. bateson, 1993 U.S.A, Macmillan publishing company. # Program Engineering | Specialization | Automatic Control Technology | | |------------------------|-------------------------------------|--| | Course Number | 20310242 | | | Course Title | Process Control Systems Lab | | | Credit Hours | 1 | | | Theoretical Hours | 0 | | | Practical Hours | 3 | | ## جامعة البلقاء التطبيقية #### **Brief Course Description:** ❖ Lap in support of the control loop system, experiments to true different controllers analog(electronics and pneumatics) and digital to control pressure, flow, level, temperature, using mat lab #### **Course Objectives:** - 1- To adjust and tuning the transmitters, controller, I/P, P/I, control valve - 2- To install the control system - 3- Tuning the control system - 4- Used mat lab to analyze stability and characteristic the control system ## Al-Balqa' Applied University ## جامعة البلقاء التطبيقية **Detailed Course Description:** | Unit
Number | Unit Name | Unit Content | Time
Needed | |----------------|-----------|--|----------------| | 1. | | Adjustments and tuning the control components | | | 2. | | On /off control of level system | | | 3. | | • (P) Control of flow | | | 4. | | • (PI) and (PD) control of flow | | | 5. | | Proportional and proportional integral control of pressure | | | 6. | | (P) Control of temperature using analog controller | | | 7. | | Analog control system with PLC | | | 8. | | Installation pneumatic control system and calibration | | | 9. | | Assembly and disassembly control valves | | | 10. | | Mat lab | | ### **Evaluation Strategies:** | Exams | | Percentage | Date | |-------|--------------|------------|------| | Exams | Reports Exam | 30% | | | | Midterm Exam | 20% | | | | Final Exam | 50% | | ## جامعة البلقاء التطبيقية ### **Teaching Methodology:** Lab. work #### **Text Books & References:** - 1. Festo and Armfield referenc - 2. Process Control and Transducers . - 3. mat lab